
 978-1-5386-2014-4/18/$31.00 ©2018 IEEE
 1

Failure Analysis and Products in a Model-Based
Environment

Jean-Francois Castet, Magdy Bareh,
Jeffery Nunes

Jet Propulsion Laboratory,
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109
castet@jpl.nasa.gov

Shira Okon, Larry Garner, Emmy
Chacko, Michel Izygon
Tietronix Software Inc.
1331 Gemini St # 300
Houston, TX 77058

mizygon@tietronix.com

Abstract—The work presented in this paper describes an
approach, including a methodology and tools, which allows
system engineers to capture failure-related information in a
model and generate automatically key failure analysis
products: the Failure Modes, Effects and Criticality Analysis
(FMECA) and the Fault Tree Analysis (FTA). The work has
been developed by Tietronix Software, Inc. and the NASA’s Jet
Propulsion Laboratory (JPL), and the resulting auto-generated
artifacts shown in this paper demonstrate the ability to obtain
powerful reliability and fault management products in a
model-based environment.

TABLE OF CONTENTS
1. INTRODUCTION ... 1	
2. ONTOLOGY AND ARTIFACT GENERATION
APPROACH .. 2	
3. SOFTWARE IMPLEMENTATION 7	
4. EXAMPLES ... 8	
5. CONCLUSION ... 12	
ACKNOWLEDGEMENTS .. 12	
REFERENCES ... 12	
BIOGRAPHY ... 13	

1. INTRODUCTION
As part of the process to create failure analysis products, the
reliability engineer needs to gather existing project data,
such as a list of components, their associated functions, and
various diagrams showing their interaction. These elements
are usually defined and documented by other engineers on
the project, and gathering all of the required data can
become inefficient and time-consuming. As a consequence,
failure analysis artifacts can rapidly diverge from the design
as it evolves, and become obsolete. In a model-based
environment, where this data is available in a common
repository, the automation of data gathering and processing
results in freeing time so that the engineer can focus on
performing the analysis. This approach ensures complete-
ness of the analysis and consistency with the current design,
a task particularly difficult using traditional methods in the
context of growing system complexity.

This innovative approach is based on the recently-published
JPL’s Fault Management ontology [1], which contains the
necessary concepts to capture failure modes, faults and
failure propagation. This ontology extends the Behavior
ontology [2], and is part of a series of ontologies developed
at JPL under the Integrated Model-Centric Engineering
(IMCE) initiative to guide standard modeling across
projects. The common vocabulary enables engineers to
capture problematic behaviors to support the discovery of
failure paths in the system, discovery that often relies on
engineer-to-engineer communication and data spread across
multiple documents. An additional benefit of this approach
is to capture failure and failure propagation information in
the same central repository, with “nominal” behaviors of the
system (rather than in separate artifacts managed by
separate teams), resulting in the earlier discovery of design
or operational issues.

We present in this paper a methodology and a software
toolset which makes use of the Fault Management ontology.
The objective of this effort was to obtain auto-generated
artifacts that match the expectations of products developed
through traditional methods and standards, so that engineers
could work with familiar products. When deemed useful,
additional pieces of information or representations enabled
by the analysis of the model were included, to aid engineers
in analyzing failure modes and effects. The software
extracts the relevant behavioral information for each system
artifact, from a common model, and converts this
information into the appropriate format. In that light, JPL
and Tietronix Software designed an approach to map the
needed information to generate a FMECA and a Fault Tree
from a SysML model consistent with the Fault Management
ontology, as shown in Section 2. Section 3 further describes
the underlying approach, and the technical implementation
by Tietronix Software of the MagicDraw plugins for
FMECA and Fault Trees generation, their features and user
interface, their model validation capabilities, as well as the
different outputs generated. The outputs range from
spreadsheets to graphical representations, as well as file
formats intended as basis for interchange with other third-
party tools used in the reliability and fault management
fields. These plugins were used on several models with
different complexity across different projects, with some
illustrative examples presented in Section 4. Section 5
concludes this paper.

 2

2. ONTOLOGY AND ARTIFACT GENERATION
APPROACH

Failure Artifact Description

This paper focuses on two failure analyses: the Failure
Modes, Effects and Criticality Analysis (FMECA) and the
Fault Tree Analysis (FTA).

The FMECA is a reliability design analysis technique used
to analyze systematically postulated failures in components
of the system to determine the resultant effects. It is
performed primarily to identify potential design deficiencies
and single-point failures (SPFs), so that appropriate risk-
management steps may be undertaken for the flight design
and mission operations (e.g., preventive measures to
decrease the likelihood of occurrence of the failure,
mitigation actions to lessen the consequences of a failure
when present in the system). Several variants of the
FMECAs exist, e.g., functional and piece-part FMECAs.
Functional FMECAs are performed down to the functional
level to evaluate the impact that lower-level failures have on
system operation. Functional FMECAs can be done
at different levels of the design hierarchy, where the scope
of the FMECAs can be the entire system, or specif-
ic subsystems or assemblies. Piece-part FMECAs are
performed at interfaces to ensure that irreversible physical
and/or functional damage does not propagate across Fault
Containment Region boundaries. For support equipment,
FMEAs are performed at the piece-part level on interfaces
to verify that support equipment failures cannot propagate
or cause damage to flight hardware. This paper focuses on
functional FMECAs, but the methodology presented in this
paper can be extended to generate other variants. When
performing the FMECA, all components are operating
within specification except for the failure mode under
consideration. Each failure mode postulated is considered to
be the only failure in the system (i.e., it is a single-failure
analysis).

The FTA is a top-down reliability design analysis technique
to deduce faults (i.e., failure causes) systematically and to
assess coverage of risk-reduction steps for those failure
causes. It covers a broad scope of threats beyond hardware
failures, such as environmental effects or operator errors.
Contrary to the FMECA, it assesses the impact of
combinations of threats, including common-cause failures.
The top-down approach of the FTA is complementary to the
bottom-up approach of the FMECA.

Many of the failure analysis products rely on the same
information (e.g., failure mode, failure propagation). As a
consequence, one of the guiding principles for establishing
the methodology to auto-generate these artifacts was to
avoid modeling the artifacts themselves, but rather to model
the system, including its off-nominal behavioral aspects, and
then to query and extract the appropriate information to
create the artifacts of interest. In essence, model once, then

filter and present the relevant information. To this effect,
JPL recently published a Fault Management ontology,
which defines a common vocabulary to capture problematic
behaviors, in particular failure modes, faults, and failure
propagation. Behaviors are typically modeled using state
machine representations (e.g., states, transitions), or
mathematical expressions (e.g., constraint blocks). The
section below briefly summarizes the Fault Management
ontology. For details about the ontology or the diagram
conventions, the reader is referred to [1].

Ontology and Mapping to the Artifacts

Figure 1 shows in blue color parts of the Fault Management
ontology relevant to this paper, with some updates since its
initial publication in [1]. Failure modes are considered as
undesirable behaviors depending on the functional context
(context provided by the PerformanceConstraint concept),
and ViolationExplanations are the conduit to indicate their
presence in the system. Fault or failure propagation is
modeled using CauseExplanations, a construct that indicates
logical causation between behaviors. One modification from
the initial ontology was to redirect the relationship between
PerformanceConstraint and Function to the “performs”
relationship instead, to allow for a better modeling of
redundancy in the model. Also, the concepts of Likelihood,
MissionImpact, DetectionMechanism and Mitigation have
been added to the ontology. Part of the work done to auto-
generate failure artifacts was to map the concepts and
relationships present in the ontology to the information
needed to construct the artifacts. This mapping is presented
next.

Failure Modes, Effects and Criticality Analysis (FMECA)

The FMECA table is comprised of several columns. The
exact column number and label vary depending of the
standard used (e.g., IEC-60812 [3], former MIL-STD-
1629A [4]), but all standards address the following
concepts: component affected by the failure mode of
interest; the failure mode; its cause, and its effects at
different level of abstraction (e.g., local effect, end effect) in
a given mode of operation; ways of detecting and mitigating
the failure mode. The criticality analysis related to the
failure indicates its likelihood of occurring and the
consequence on the mission. A typical table is shown in
Figure 2.

Failure information is captured in a model according to the
Fault Management ontology, and the following queries are
performed to create a FMECA table that matches
expectations of traditional standards mentioned above:

• Failure mode: a ViolationExplanation in the model
indicates the presence of a failure mode in a certain
context (functionality). Each ViolationExplanation
in the model will have a dedicated row in the
FMECA and the name of the ViolationExplanation
will be reported in the “failure mode” column.

 3

Figure 1. Excerpts from the Fault Management Ontology [1] – Concepts shown in boxes, with abstract concepts

italicized; directed arrows for relationships between concepts (name next to the target concept); derived relationships are
preceded by “/”; multiplicity indicated between brackets.

• Component: as shown in the ontology, a Viola-
tionExplanation explains one or more behaviors
associated with a unique component. Another
method can be used to find the associated compo-
nent: a ViolationExplanation analyzes at least one
PerformanceConstraint that characterizes a “per-
forms” relationship between a Component and a
Function. The Component is then listed in the
“component” column of the FMECA. Note that the
component hierarchy can be indicated in the
FMECA using the relationship between compo-
nents (e.g., composite association, reference
association).

• Function: as mentioned above, a ViolationExplana-
tion relates to at least one Function through the
PerformanceConstraint concept. The identified
Function is then listed in the “function” column.

• Cause: Causes are captured in the model using
CauseExplanations. The name of all CauseExpla-
nations that analyze the same behavior as the
ViolationExplanation of interest explains are re-
ported in the “cause” column.

• Phase of Criticality or Operational Mode of
Equipment: as part of the model, it is possible to
define some context in which some functionality is
required. The current implementation of the plugin
is restricted to high-level “mission phases” (for ex-
ample: launch, cruise, orbit insertion, science
collection, disposal. Other phases can be defined
based on the system and the mission). Functions
are related to Mission Phases through a composite
association. If there is no relationship, it is assumed
that the Function is needed in all phases. The Mis-
sion Phases found through the query are reported in
the “phase” column. It is envisioned in the future to
extend this concept to other contextual information

 4

by leveraging the ModeContext concept, such as
operational modes of the system, or to potentially
infer the context through other means rather than
direct relationships in the model.

• Local Effects: failure propagation is captured in the
model using CauseExplanations. As indicated in
[1], CauseExplanations indicate a causal relation-
ship between behaviors: for example, if a
CauseExplanation analyzes Behavior 2 (B2) and
explains Behavior 1 (B1), it means that B1 is the
cause of B2, or conversely, B2 is the effect of B1.
The latter interpretation is the one of interest for
determining the effects. At JPL, we decided that
the local effect would represent the effect of a fail-
ure mode on the behavior of components one level
up in the component hierarchy. Using the example
described in [1] where a Lamp is part of an Illumi-
nationDevice that is itself part of Rover, if a failure
mode in the Lamp has an effect on the Illumina-
tionDevice, then the associated behavior in the
IlluminationDevice is reported in the “local effect”
column. If the behavior of the IlluminationDevice
is itself explained by a ViolationExplanation, the
ViolationExplanation is reported in the “local ef-
fect” column instead of the behavior. Note that it is
possible to have several effects listed in the “local
effect” column, depending on the causal relation-
ships captured in the model through
CauseExplanations. Note also that it is possible for
a failure mode to have no local effect if no higher-
level components are reached through causal rela-
tionships. As mentioned earlier, the FMECA is a
single failure analysis: this means that the effects
reported in the “local effects” column must be re-
lated to a single ViolationExplanation. If several
ViolationExplanations need to be combined to ob-
tain that effect (e.g., through an AND logical
statement in a CauseExplanation in the fault propa-
gation path), then that effect will not be listed.

• End Effects: continuing the discussion from the
local effect above, the end effect of a failure mode
is determined through causal relationships using
CauseExplanations. Given that FMECAs can be
performed at different levels (e.g., system, subsys-
tem), it was decided to leave the determination of
the level to the user (in our implementation,
through a selection menu in the FMECA plugin):
the user selects the top component, and end effects
will be reported in a similar fashion as for the local
effects: if there is a chain of CauseExplanations
that reaches the top component, then the behavior
of the top component or its ViolationExplanation if
applicable will be reported in the “end effects” col-
umn. For example, the user can select the Rover as
the scope of the FMECA: in that case, given that a
broken lamp results in the inability for the Rover to
perform some science activities, that effect will be

listed in the row related to the broken lamp. Note
that in this example, the fact that there is a single
level “hop” between the local and the end effect is
coincidental; many levels can exist in general. Also
note that the comment made above for local effects
regarding the single failure point of view of
FMECA also applies for determining end effects.

• Detection Method: in the ontology, there is a
relationship between a ViolationExplanation and
DetectionMechanism. Found Detection Mecha-
nisms will be listed in the “detection method”
column.

• Compensating Provisions: using the ontology,
mitigating actions can be captured using the Miti-
gation concept, related to ViolationExplanation
through the “mitigates” relationships. Found Miti-
gations will be listed in the “compensating
provisions” column.

• Likelihood: the likelihood of a failure mode is
captured in the model using a Likelihood block that
characterizes the ViolationExplanation of interest.
Different standards and approaches are possible for
rating the likelihood. At JPL, we use a 1-3 rating to
indicate a low, medium, or high probability.

• Severity/Mission Impact: as for the likelihood, the
severity of the failure mode is modeled using a
MissionImpact block that characterizes the Viola-
tionExplanation. Here as well several rating
schemes are used in the industry. JPL uses a 1-6
rating scheme, where 1 is a minor impact on the
mission and 6 is a catastrophic failure. If no rating
is provided, the tool will try to infer a rating, by
making use of the redundancy information cap-
tured using the RedundancyExplanation concept.

Figure 2 illustrates the building of an FMECA table, in a
simple case. One more piece of information the tool
presents is the entire fault propagation path starting with the
ViolationExplanation of interest. This is a great enhance-
ment provided by the model compared to the traditional
artifact, as it allows the analyst to fully understand the
impact of a failure mode in the system, rather than at two or
three pre-determined levels.

Fault Tree Analysis (FTA)

The FMECA process described above is fairly straightfor-
ward compared to the Fault Tree construction. Despite the
existence of detailed standards or handbooks related to
building fault trees (e.g., [5]), the determination of the
immediate causes of an event and their grouping often
remain dependent on the analysts and their understanding of
the system. As part of the development of the FTA plugin,
we decided on an approach to build systematically a fault
tree from model information and developed rules to present
and to group events.

 5

Figure 2. FMECA Construction from Model Information

The Fault Tree Analysis starts with determining the scope of
the analysis. To that effect, the analyst is presented with a
list of all ViolationExplanations in the system (organized by
components). The analyst then selects the ViolationExplana-
tion that will constitute the top of the tree. From there, the
tool will explore systematically the fault propagation paths
in the model by identifying CauseExplanations and parsing
the logical statements they may hold. The immediate causes
of an event are determined through various means, as
described in the next few paragraphs.

The simplest case occurs when “simple” CauseExplanations
are present, that is, CauseExplanations with single analyzes
and explains relationships. For example, as illustrated in
Figure 3, three CauseExplanations analyze the same
behavior (B1), and each explains a single behavior (B2, B3,
and B4). In that particular case, the fault tree will interpret
this model as an OR gate with three immediate causes of the
event of interest. If the behaviors are explained by
ViolationExplanations, the ViolationExplanations are
reported in the tree instead of the behaviors themselves.
Note that the same tree could be captured using a single

CauseExplanation with the following logical statement: B2
OR B3 OR B4.

Figure 3. Simple OR gate

However, the logical combination of causes can be more
complex than OR statements. Logical statements are
captured using UML expressions that reference a library of
logical operators and the relevant behaviors in the model.
For example, if Behavior 2 (B2) and either Behavior 3 (B3)
or 4 (B4) are needed for a given effect (B1), then the logical
statement captured in the model will be of the form “B2
AND (B3 OR B4)”. The tool described in this paper is able

 6

to understand these logical expressions, and renders them in
the form of a tree. However, due to some restrictions on the
structure of fault trees for this approach to comply with the
NASA Fault Tree Handbook [5], more processing is
required. Indeed, fault trees must alternate gates and events;
gate-to-gate connections or event-to-event connections are
not allowed. In the example above, the tool cannot directly
connect the AND gate and the OR gate; an event must be
placed as shown in Figure 4, and the tool has been designed
to extract labels from the model for these “extra” events as
much as possible. It currently uses for example the names of
expressions in the expression tree modeling the logical
statements. More techniques are considered for future
enhancements, such as leveraging super-state information.

Figure 4. Logical Expression

The tool also handles common-cause failures. As described
in [1], common-cause failures are modeled using
CauseExplanations with multiple analyzes relationships. In
that case, the tool will display the associated cause in
multiple locations in the tree, with the “CC” label following
the name of the event, as shown in Figure 5.

Fault tree standards provide guidance for determining the
causes of an event, particularly highlighting the necessity to
take a methodical one-step-at-a-time leading to the
discovery of immediate causes, without jumping to lower
level events. For example, if several failure modes of a same
component lead to the same effect, they will report first a
“component failure” in the tree before going into the detail
of the various failure modes. The tool provides a similar
functionality by identifying situations where multiple failure
modes of a same component are found as immediate causes,
and inserts an event in-between highlighting the component.
A similar behavior occurs when several failure modes
related to a same function are found: in that case, an event
related to the function is inserted in the tree, as shown in
Figure 6.

Figure 5. Common-cause failures

Figure 6. Component and Functional Grouping

The FTA plugin traverses the failure propagation path
usually by looking exclusively at CauseExplanation
relationships. However, more model constructs are
considered to deduce the propagation path. For example, the
tool takes into consideration transitions between states in
state machines. While building the fault tree, if there is an
incoming transition to an event in the tree, and the transition
itself or the source of the transition have CauseExplanations
pointing at it, then the tool will continue exploring the
failure path using these CauseExplanations. More constructs
are under consideration for future releases, such as
continuing the failure path from sub-states to super-states.

Finally, the tool identifies parts of the tree that are repeated
in different branches and creates transfer gates and sub-trees
for ease of review.

JPL and Tietronix Software derived about 90 high-level
requirements for the FMECA and FTA tools, specifying
both the tool scope, but also the required outputs and user
interface. The following section describes the software
implementation.

 7

3. SOFTWARE IMPLEMENTATION
Tietronix Software, Inc. developed a set of Fault
Management (FM) tools within the selected modeling tool
(MagicDraw) to extract the information captured within the
models. Tietronix Software developed a FMECA plugin, a
FTA plugin, and error handling capabilities for both the
FMECA and FTA plugins. Tietronix Software extended a
methodology established in prior work for nominal model-
based design to support the fault management domain [6],
[7], and [8]. Tietronix Software developed a set of FM
plugins that were demonstrated on NASA JSC projects for
the Cascade Distillation System and a Habitat Power
Architecture model [9]. Tietronix Software leveraged this
technology and adapted the tools to fit the Fault Manage-
ment ontology and rules presented in Section 2 to
automatically extract FMECA and Fault Tree Analysis
products from the system models. The error handling
capability checks the models against the Fault Management
ontology and flags non-conformances. Both plugins include
this capability and generate a report with the suspected
model element or relationship and a description of the
suspected non-conformance. If errors are detected, the
analyst is given the choice to continue with the generation
of the artifact, or to stop and fix the model. The error
detection capability gives the assurance to the analyst that
the model is built correctly according to the rules of the
Fault Management ontology.

As part of the plugin development a Fault Common plugin
was developed. This plugin captures the mapping between
the ontology (Figure 1) to the MagicDraw SysML elements
and relationships. The Fault Common plugin is a utility that
is used by both the FTA and FMECA plugins, making it
possible to make updates reflected in the ontology in one
place. The software is written in JAVA and its installation
adheres to the MagicDraw plugin installation standards.
This section describes in detail the tools developed.

FMECA Plugin

The FMECA Plugin was built to extract details about
potential failure modes described in the model and traverses
behavior constructs to determine potential local/end effects
for analysis.

The FMECA plugin presents a user interface that allows the
user to select the end effect level based on the component
hierarchy. Using the ontology described in Section 2, the
plugin identifies all the ViolationExplanations in the model,
all Components and associated hierarchy (both physical
through composite associations and logical through
reference associations), and the behavior elements. The tool
then traverses the fault propagation paths, extracting data, to
populate the FMECA table (Figure 2).

Several outputs are generated, and presented to the user
through different formats:

• Output views: two views are generated by the tool,
a detailed view and a summary view. The detailed
view has a unique row for every combination of
component, failure mode, cause, mission phase, lo-
cal effect, end effect, detection method, and
mitigation detected along each fault propagation
path. The detailed view is an additional tool pro-
vided to the user to understand the model data for a
more in-depth failure analysis and for debugging
the model. By contrast, the summary view has a
row for every combination of component, failure
mode, and mission phase, but compresses the data
for causes, local and end effects, detection meth-
ods, and mitigations into a cell for each row, akin
to a traditional FMECA output.

• Output formats: The results are displayed within
the plugin’s user interface in tabular form, allowing
the user to look at the FMECA in the modeling en-
vironment and verify the model correctness. The
user interface is designed to allow the customer to
tailor the desired product by selecting or deselect-
ing columns of interest for analysis. The analysis is
saved in Excel and csv file formats, for communi-
cation, review and archiving. The plugin is able to
support any pre-defined FMECA Excel template.

FTA Plugin

The FTA Plugin derives fault trees from ViolationExplana-
tions, representing potential top-level events, and traverses
relationships to extract the fault tree event paths for
analysis. Using the ontology described in Section 2, the
plugin identifies all the ViolationExplanations in the model
and lists them as potential events for analysis in the Fault
Tree User Interface. The plugin then generates a Fault Tree
Markup Language (FTML) file. The FTML is an XML-
based file format designed by Tietronix Software to
generate the fault tree displayed in the Fault Tree Viewer in
MagicDraw, an Excel version of the fault tree, an SVG
view, JPG file outputs, as well as to support third-party tool
exchange. For example, using an adapter reading FTML
data, the fault tree was exported to SAPHIRE, a probabilis-
tic risk and reliability assessment tool [10].

The user interface in the Fault Tree Viewer allows the
modeler to interact between the fault tree display and the
MagicDraw model elements by right-clicking on a Fault
Tree event and selecting “Select in Containment Tree” (see
Figure 7). The user can quickly explore the fault tree and
understand the elements that participated in its construction.
In addition, the user can collapse and expand events in the
tree and allow for traversing multiple linked fault trees via
transfer events.

 8

Figure 7. Fault Tree Event Tool Options

As mentioned above, the plugin also generates a version of
the fault tree in a SVG format, that can be opened in a web
browser for example, enabling the communication of the
fault tree to colleagues and reviewers in a cross-platform
fashion. The SVG view is also fully interactive, with
collapsing/expanding actions and transfer event navigation.
Excel versions of the fault tree can be used for capturing
information in subsequent fault management activities, and
the JPG files can be used in reports or presentations.

Transfer events are automatically generated when repetitive
events are found in the tree. The tool provides the ability to
navigate between fault trees via transfer events (shaded in
blue and marked with a standard triangular symbol) and
back via selection of a fault tree in the “Transfer From”
table. In Figure 8, the left column provides the user a list of
available views generated for one user selected event. The
options include the complete fault tree which does not show
transfer events or the fault trees with active transfer events.

Figure 8. “Lamp B Filament Broken” Transfer Tree and

“Resistance Shorted” Transfer Event

The tool is capable of extracting statistics from the model
including counts for Basic Events (unique/ repeated/ total
counts), Intermediate Events (unique/ repeated/ total
counts), Transfer Events (unique/ repeated / total counts),
Common Cause failures, and occurrences of Basic Events.

4. EXAMPLES
The following section describes example models used to
demonstrate the modeling techniques and toolsets.

Illumination Device Example

The Illumination Device Model example represents an
Illumination Device on the Rover that supports nighttime
driving and select science activities (Figure 9), derived from
the example presented in [1]. This example was used as a
proof of concept for developing the basic capabilities of the
FMECA and FTA plugins, and it illustrates how the
ontological concepts and their use in a model result in the
creation of FMECA and fault tree artifacts that match
traditional expectations.

Figure 9. Illumination Device Model Architecture

In this subsection, we depict how the loss of the Battery
results in losing the ability to provide a proper illumination,
which in turn affects the performance of the Rover. The
failure mode of interest (no electrical power supplied) is
captured in the Battery behavior model shown in Figure 10
with a ViolationExplanation named “Battery No Output”.
Several states are explained by this ViolationExplanation,
“Fully Discharged” and “Dead Battery”. The ViolationEx-
planation indicates that these states are problematic with
respect to the battery functionality.

Figure 11 describes the fault propagation path from the
Battery component state machine to the Rover state
machine, through the Illumination Device. The CauseEx-
planation “Dead Battery” explains the Battery state “Dead
Battery” and analyzes the Illumination Device state
“Permanent Insufficient Illumination”, indicating that the
battery state adversely affects the variable of interest at the
Illumination Device level, i.e., its luminous flux. Then the
CauseExplanation “Loss of Nighttime Driving Illumination”
explains the Illumination Device state “Permanent
Insufficient Illumination” and analyzes the Rover state
“Nighttime Driving Unavailable”, completing the
propagation chain by indicating that nighttime driving is
compromised. Note that the associations shown between the
CauseExplanations and ViolationExplanations to the State
Machines are abstractions of the actual dependency
relationships that are established between these elements
and the states owned by the State Machine, for visualization
purposes.

 9

Figure 10. Battery Behavior Model Showing Battery No Output ViolationExplanation

Figure 11. Fault Propagation Path Description for
failure mode “Battery No Output” – Associations from

Explanations for visualization purposes only

Figure 12 shows an excerpt of the FMECA plugin output in
the modeling environment. The Rover was selected as the
end effect level, and the highlighted row relates to the
“Battery No Output” failure mode discussed above,
presented in the “summary view”. As expected in a
traditional FMECA, the failure mode is properly listed, with
cause and effect information. Here, the local effect is the
“Permanent Insufficient Illumination” and the end effect is
the “Loss of nighttime driving ability”, inferred by the tool
by traversing the failure propagation chain described above.
Several columns to the right are not shown in the figure,
containing information about detection mechanism,
mitigation, likelihood and criticality rating. As described
earlier in the paper, the “detailed view” (available through a
tab) displays individual failure propagation paths. The
“error summary” tab list issues, if any, detected by the
plugin. Also, several csv and Excel files were created when
the plugin ran the analysis.

Figure 12. Result of FMECA Output for “Battery No Output” Failure Mode

 10

Figure 13. “Loss of driving ability” Fault Tree Output

Figure 13 depicts the Fault Tree analysis output in the
modeling environment for the “Loss of nighttime driving
ability” event, depicted as a ViolationExplanation in Figure
11. “Loss of nighttime driving ability” is the top event, with
“Permanent Insufficient Illumination” shown as an
immediate cause. Note that the “Battery No Output” event
on the bottom right corner of the figure is not listed
immediately below: as shown in Figure 6, a functional
grouping was detected by the plugin, and it created an
intermediate event to gather several failure modes related to
the battery functionality. As seen in the fault tree, another
battery state (“Battery Low Voltage”) can lead to
insufficient illumination, and it is grouped with the “Battery
No Output” event under the plugin-inferred intermediate
event. Several trees were created, as seen in the left panel in
the FTA plugin interface, as repeating sections of the fault
tree were detected by the FTA plugin. Transfer events were
created as a result. Note also that in Figure 13, several
branches were collapsed for readability, marked by a “+”
symbol embedded in the gate.

Habitable Spacecraft Example

The Habitable Spacecraft model is a simplified representa-
tion of a NASA spacecraft architecture that was used to
apply the fault management methodology to space systems,
as well as to demonstrate the implementation of more
complex modeling aspects, such as redundancy, cross tie
application and multiple subsystems. The Habitable
Spacecraft is a Vehicle with three subsystems: Power,
Environment and Life Support System (ECLSS) and the
Command & Data Handling (CD&H) System (Figure 14).
In this subsection, we depict how the loss of the cabin air
circulation results in failure of the life support system,
which then affects the success of the mission. We then
provide the FMECA and FTA output from the plugins tools.

Figure 14. Fan in the Can Model Architecture

Figure 15 depicts the Cabin Fan behavior model. The Cabin
Fan has the function “Circulate Air”, and the failure mode
of interest here is the “Loss of Cabin Air Circulation”
captured by the appropriate ViolationExplanation that
explains the state “Cabin Fan Failed off”.

Figure 16 describes the fault propagation path from the
Cabin Fan component state machine to the Habitable
Spacecraft state machine, through the ECLSS subsystem.
The CauseExplanation “ECLSS Failed Off”, explains the
Cabin Fan state “Cabin Fan Failed Off” and analyzes the
ECLSS state “ECLSS Failed Off”. Then the CauseExplana-
tion “Habitable Spacecraft Failed Off” explains the ECLSS
state “ECLSS Failed Off” and analyzes the Habitable
Spacecraft state “Habitable Spacecraft Failed Off”.

The FMECA result shows that the failure mode “Loss of
Cabin Fan Air Circulation” has a Local Effect of “Loss of
Life Support” and an end effect of “Loss of Crew” (Figure
17). Since the Cabin Fan is referenced by ECLSS, the
ViolationExplanation, “Loss of Life Support”, is reported as
the local effect. A similar relation exists between ECLSS
and the Habitable Spacecraft, and “Loss of Crew” is
reported as the end effect. Since the CauseExplanation
“Cabin Fan Malfunction 1” analyzes the failed state, “Cabin
Fan Failed Off”, the CauseExplanation is reported in the
FMECA as a potential failure cause, and in the fault tree as
a child event to the “Loss of Cabin Fan Air Circulation”
event. Figure 18 depicts the Fault Tree analysis result for the
“Loss of Crew” event. Note that “Loss of Cabin Fan Air
Circulation” is depicted as an intermediate event. Note also
that the fault tree has been collapsed under the power
subsystem failure event, as indicated by the “+” signal
below the event.

 11

Figure 15. Cabin Fan Behavior Model

Figure 16. Fault Propagation Path Description for
failure mode “Loss of Cabin Fan Air Circulation” –

Associations from Explanations for visualization purposes
only

Figure 17. Results of FMECA Output for Loss of Cabin
Fan failure and End Effects

Figure 18. Fault Tree for “Loss of Crew” Event

 12

5. CONCLUSION
This paper presented an approach to capture failure
information in a modeling environment using the JPL-
authored Fault Management ontology and a set of plugins
designed to automatically extract two reliability artifacts,
the FMECA and the Fault Tree. The mapping between the
ontological elements and the artifact building blocks was
described and illustrated through two examples.

The concept described in this paper demonstrates the ability
to obtain products in a model-based environment that meet
traditional expectations, as well as leverage model
information to provide the user with in-depth analysis
capabilities. This concept enables the integration of fault
management early in the system engineering lifecycle,
facilitating the discovery of design weaknesses and
enhancing the capability to produce safe, hazard-free
systems. This tool suite enables reliability engineers to use
system models captured by system engineers to evaluate
designs for potential faults, perform reliability analyses, and
contribute to the overall system models by adding specific
faults and associated reliability-related knowledge.

The FMECA and Fault Tree plugins have been used on
projects at JPL, for example for the Soil Moisture Active
Passive (SMAP) spacecraft or the Europa Clipper mission.
Future work will include several extensions. For example,
we will focus on expanding the Fault Management toolset to
support reliability analysis for multiple Project Lifecycle
Phases. For the FMECA and FTA tools, future additions
will include features such as supporting active or passive
redundancy, voting gates, and suggesting a wider range of
criticality ratings to the user. Also, we will continue work
on extending the plugins to support Probability Risk
Assessment (PRA) and Bayesian probability theory with
third-party tool support (e.g., MATLAB, Microsoft
Bayesian Network (MSBNx)). Extensions such as these will
help to analyze and mature more efficiently the design of
systems for NASA and other industry applications.

 ACKNOWLEDGEMENTS
The research was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration, as well as by Tietronix Software, Inc. under
NASA/SBIR award No. NNX15CP03C. The authors want
to acknowledge Dr. Howard Wagner, Ken McMurtrie, and
Claus Nilson for their help in developing the toolset
presented in this paper. The authors would like to thank Lui
Wang from the Software Robotics Simulation Division of
NASA Johnson Space Center for his support, as well as
JPL’s IMCE organization.

 REFERENCES
[1] J.-F. Castet et al., “Fault Management Ontology and

Modeling Patterns,” in AIAA SPACE 2016, AIAA
SPACE Forum, Long Beach, CA, 2016. doi:
https://doi.org/10.2514/6.2016-5544.

[2] J.-F. Castet et al., “Ontology and Modeling Patterns for
State-Based Behavior Representation,” in AIAA
Infotech @ Aerospace, AIAA SciTech Forum,
Kissimmee, FA, 2015. doi:
https://doi.org/10.2514/6.2015-1115.

[3] IEC 60812:2006, Analysis Techniques for System
Reliability - Procedure for Failure Mode and Effects
Analysis (FMEA), International Electrotechnical
Commission, 2006.

[4] MIL-STD-1629A, Procedure for Performing a Failure
Mode, Effects, and Criticality Analysis, 1980
[Cancelled without replacement in 1998].

[5] Fault Tree Handbook with Aerospace Applications,
National Aeronautics and Space Administration, 2002.

[6] Wang, L., Izygon, M., Okon, S., Garner, L., and
Wagner, H., “Effort to Accelerate MBSE Adoption and
Usage at JSC,” AIAA Space 2016, p. 5542, 2016.

[7] Izygon, M., Wagner, H., Okon, S., Wang, L.,
Sargusingh, M.J., and Evans, J., “Facilitating R&M in
Spaceflight Systems with MBSE,” 2016 Reliability and
Maintainability Symposium (RAMS), pp. 1-6. IEEE,
2016.

[8] John W. Evans, Frank J. Groen, Lui Wang, Rebekah
Austin, Arthur Witulski, Steven L. Cornford, Martin
Feather, and Nancy Lindsey. "Towards a Framework
for Reliability and Safety Analysis of Complex Space
Missions", 19th AIAA Non-Deterministic Approaches
Conference, AIAA SciTech Forum, (AIAA 2017-
1099).

[9] Sargusingh, M. J., Okon, S., and Callahan, M. R.,
“Cascade Distillation System Design for Safety and
Mission Assurance,” 45th International Conference on
Environmental Systems, 2015.

[10] SAPHIRE – System Analysis Programs for Hands-on
Integrated Reliability Evaluations, Idaho National
Laboratory, https://saphire.inl.gov/.

 13

BIOGRAPHY
Jean-Francois Castet is a Systems
Engineer in the Autonomy and Fault
Protection group at the Jet Propulsion
Laboratory (JPL), and he is part of the
Flight System Engineering Team on the
Europa Clipper Project. He is also
involved in institutional activities to
define modeling patterns for system

behaviors, as well as infuse MBSE techniques into the fault
management discipline. He received a M.S. degree from
SUPAERO (Toulouse, France), and M.S. and Ph.D. in
Aerospace Engineering from the Georgia Institute of
Technology (Atlanta, GA).

Magdy Bareh is a Senior Flight
Systems Engineer at JPL, currently
working on the Mars2020 project. Most
recently he was the supervisor for the
Autonomy and Fault protection group.
In his career, he has worked on flight
system development and operations of
several missions including Mars

Science Laboratory, Spitzer Space Telescope, Dawn
development, Deep Space 1, and Galileo operations. His
areas of expertise include flight system design, Autonomous
Fault Protection designs, avionics design and development,
Verification and Validation campaigns and Spacecraft
operations leadership. Magdy has a BS and MS Degree in
Electrical and Computer Engineering from California State
Polytechnic University, Pomona.

Jeffery Nunes is a Principal Engineer
at JPL and serves as the JPL Systems
Reliability Technical lead in the
Reliability Engineering & Mission
Environmental Assurance Section. He
has 32 years of experience at JPL
supporting many flight projects and
institutional tasks, including the MBSE
effort in the Office of Safety & Mission

Success. He also serves as the JPL Reliability Technical
Discipline representative to NASA.

 Michel Izygon, Ph.D. is the CTO of
Tietronix Software, a company
specializing in advanced software
technologies applied to Aerospace,
Medical Devices and renewable energy
power plants. Dr. Izygon has over 25
years of experience in software
engineering including all phases of
Software Development Lifecycle. He

has extensive experience in UML, which he taught at the
University of Houston – Clear Lake for ten years as well as
in SysML. He is the Principal Investigator on the NASA
SBIR research project focused on developing the Model
Based Fault Management Engineering methodology and
associated toolset.

Shira Okon is a Principal Engineer at
Tietronix Software specializing in
Model Based Systems Engineering. She
holds an Aeronautical and Astronauti-
cal Engineering degree from Purdue
University with an emphasis on
Aerospace System Design. Ms. Okon
has years of Fault Management

expertise. She has training in CMMI and has obtained a Six
Sigma Black Belt. She has used these skills to lead teams in
identifying faults, analyzing root cause, and posing
solutions for improvement. She is currently a SysML expert
using MBSE methods on multiple NASA Engineering
projects.

Larry Garner is a Senior Software
Engineer at Tietronix Software
specializing in Object Oriented Design,
Software Integration, Systems Modeling
(SysML) and Distributed Computing.
Mr. Garner is a lead architect for
MagicDraw plugin development and his
efforts include tools that assist in model

reasoning, data mining, model transformations, and
integration with other external applications. Several of the
tools developed by Mr. Garner are in use across multiple
NASA centers. He holds a Bachelor of Science degree in
Computer Science and Mathematics, and a Master of
Science in Computer Information Systems.

Emmy Chacko is a Senior Software
Engineer at Tietronix Software
specializing in Object Oriented Design,
Software Integration, Systems Modeling
(SysML) and Distributed Computing.
Ms. Chacko is a software engineer
whose efforts include tools that assist in

model reasoning, model transformations, and integration
with other external applications. Prior to working at
Tietronix, Ms. Chacko worked for Symantec where she
assisted in developing the Norton Antivirus version 7.x. She
holds Bachelor of Science degree in Electronics, and a
Master of Science in Computers.

